Publikation
Tumor microenvironment-derived S100A8/A9 is a novel prognostic biomarker for advanced melanoma patients and during immunotherapy with anti-PD-1 antibodies
Wissenschaftlicher Artikel/Review - 05.12.2019
Wagner Nikolaus, Utikal Jochen, Umansky Viktor, Garbe Claus, Schadendorf Dirk, Holland-Letz Tim, Herpel Esther, Sucker Antje, Lichtenberger Ramtin, Funder Anne, Kehrel Coretta, Kemper Charlotte, Schuermans Valerie, Tarnanidis Kathrin, Reith Maike, Gries Mirko, Weide Benjamin, Gebhardt Christoffer
Bereiche
PubMed
DOI
Zitation
Art
Zeitschrift
Veröffentlichungsdatum
eISSN (Online)
Seiten
Kurzbeschreibung/Zielsetzung
BACKGROUND
Predicting metastasis in melanoma patients is important for disease management and could help to identify those who might benefit from adjuvant treatment. The aim of this study was to investigate whether the tumor microenvironment-derived protein S100A8/A9 qualifies as prognostic marker for melanoma patients, also in the setting of immunotherapy.
METHODS
S100A8/A9 gene and protein expression were analyzed on melanocytic nevi, primary melanomas and metastases using a cDNA library and three independent tissue-microarrays (TMA). Serum levels of S100A8/A9 were measured using a specific ELISA in two independent cohorts of 354 stage III and stage IV melanoma patients as well as in two independent cohorts of patients treated with the PD-1 antibody pembrolizumab.
RESULTS
cDNA analysis revealed an upregulation of S100A8 and S100A9 gene expression in melanoma metastases compared to primary melanomas. Significantly higher numbers of infiltrating S100A8/A9 positive cells were found in tissue samples of metastasizing primary melanomas compared to non-metastasizing melanomas (P < .0001) and in melanomas of short-term survivors compared to long-term survivors (P < .0001). Serum S100A8/A9 levels > 5.5 mg/l were associated with impaired overall survival in two independent cohorts (both P < .0001). Importantly, patients with serum elevated S100A8/A9 treated with pembrolizumab showed significantly impaired survival compared to patients with lower S100A8/A9 levels (cohort 1: P = .0051; cohort 2: P < .0001).
CONCLUSIONS
The tumor microenvironment-associated protein S100A8/A9 serves as a novel prognostic marker for metastasis and survival of metastatic melanoma patients and predicts response to immunotherapy with pembrolizumab. These data underscore the significance of tumor microenvironment-derived factors as suitable biomarkers for melanoma.