Publikation
Functional relevance of the cannabinoid receptor 2 - heme oxygenase pathway: a novel target for the attenuation of portal hypertension
Wissenschaftlicher Artikel/Review - 03.09.2013
Steib Christian J, Gmelin Leonore, Pfeiler Susanne, Schewe Julia, Brand Stephan, Göke Burkhard, Gerbes Alexander L
Bereiche
PubMed
DOI
Zitation
Art
Zeitschrift
Veröffentlichungsdatum
eISSN (Online)
Seiten
Kurzbeschreibung/Zielsetzung
AIMS
In liver cirrhosis, inflammation triggers portal hypertension. Kupffer cells (KC) produce vasoconstrictors upon activation by bacterial constituents. Here, we hypothesize that the anti-inflammatory action of the cannabinoid receptor 2 (CB2) agonists JWH-133 and GP 1a attenuate portal hypertension.
MAIN METHODS
In vivo measurements of portal pressures and non-recirculating liver perfusions were performed in rats 4weeks after bile duct ligation (BDL). Zymosan (150μg/ml, isolated liver perfusion) or LPS (4mg/kgb.w., in vivo) was infused to activate the KC in the absence or presence of JWH-133 (10mg/kgb.w.), GP 1a (2.5mg/kgb.w.) or ZnPP IX (1μM). Isolated KC were treated with Zymosan (0.5mg/ml) in addition to JWH-133 (5μM). The thromboxane (TX) B2 levels in the perfusate and KC media were determined by ELISA. Heme oxygenase-1 (HO-1) and CB2 were analyzed by Western blot or confocal microscopy.
KEY FINDINGS
JWH-133 or GP 1a pre-treatment attenuated portal pressures following KC activation in all experimental settings. In parallel, HO-1 expression increased with JWH-133 pre-treatment. However, the inhibition of HO-1 enhanced portal hypertension, indicating the functional role of this novel pathway. In isolated KC, the expression of CB2 and HO-1 increased with Zymosan, LPS and JWH-133 treatment while TXB2 production following KC activation was attenuated by JWH-133 pre-treatment.
SIGNIFICANCE
JWH-133 or GP 1a treatment attenuates portal hypertension. HO-1 induction by JWH-133 plays a functional role. Therefore, the administration of JWH-133 or GP 1a represents a promising new treatment option for portal hypertension triggered by microbiological products.