Publikation
MR-based hypoxia measures in human glioma
Wissenschaftlicher Artikel/Review - 07.08.2013
Tóth Vivien, Zimmer Claus, Schlegel Jürgen, Ringel Florian, Gempt Jens, Kooijman Hendrik, den Hollander Jürgen, Hirsch Nuria M, Förschler Annette, Preibisch Christine
Bereiche
PubMed
DOI
Zitation
Art
Zeitschrift
Veröffentlichungsdatum
eISSN (Online)
Seiten
Kurzbeschreibung/Zielsetzung
Hypoxia plays a central role in tumor stem cell genesis and is related to a more malignant tumor phenotype, therapy resistance (e.g. in anti-angiogenic therapies) and radio-insensitivity. Reliable hypoxia imaging would provide crucial metabolic information in the diagnostic work-up of brain tumors. In this study, we applied a novel BOLD-based MRI method for the measurement of relative oxygen extraction fraction (rOEF) in glioma patients and investigated potential benefits and drawbacks. Forty-five glioma patients were examined preoperatively in a pilot study on a 3T MR scanner. rOEF was calculated from quantitative transverse relaxation rates (T2, T2*) and cerebral blood volume (CBV) using a quantitative BOLD approach. rOEF maps were assessed visually and by means of a volume of interest (VOI) analysis. In six cases, MRI-targeted biopsy samples were analyzed using HIF-1α-immunohistochemistry. rOEF maps could be obtained with a diagnostic quality. Focal spots with high rOEF values were observed in the majority of high-grade tumors but in none of the low-grade tumors. VOI analysis revealed potentially hypoxic tumor regions with high rOEF in contrast-enhancing tumor regions as well as in the non-enhancing infiltration zone. Systematic bias was found as a result of non-BOLD susceptibility effects (T2*) and contrast agent leakage affecting CBV. Histological samples demonstrated reasonable correspondence between MRI characteristics and HIF-1α-staining. The presented method of rOEF imaging is a promising tool for the metabolic characterization of human glioma. For the interpretation of rOEF maps, confounding factors must be considered, with a special focus on CBV measurements in the presence of contrast agent leakage. Further validation involving a bigger cohort and extended immuno-histochemical correlation is required.