Publikation
Possible protective role for C-reactive protein in atherogenesis: complement activation by modified lipoproteins halts before detrimental terminal sequence
Wissenschaftlicher Artikel/Review - 20.04.2004
Bhakdi Sucharit, Torzewski Michael, Paprotka Kerstin, Schmitt Steffen, Barsoom Hala, Suriyaphol Prapat, Han Shan-Rui, Lackner Karl J, Husmann Matthias
PubMed
DOI
Zitation
Art
Zeitschrift
Veröffentlichungsdatum
eISSN (Online)
Seiten
Kurzbeschreibung/Zielsetzung
BACKGROUND: Previous work indicated that enzymatically remodeled LDL (E-LDL) might activate complement in atherosclerotic lesions via a C-reactive protein (CRP)-dependent and CRP-independent pathway. We sought to substantiate this contention and determine whether both pathways drive the sequence to completion. METHODS AND RESULTS: E-LDL was prepared by sequential treatment of LDL with a protease and cholesteryl esterase. Trypsin, proteinase K, cathepsin H, or plasmin was used with similar results. Functional tests were used to assess total complement hemolytic activity, and immunoassays were used to demonstrate C3 cleavage and to quantify C3a, C4a, C5a, and C5b-9. E-LDL preparations activated complement to completion, independent of CRP, when present above a threshold concentration (100 to 200 microg/mL in 5% serum). Below the threshold, all E-LDL preparations activated complement in dependence of CRP, but the pathway then halted before the terminal sequence. Native LDL and oxidized LDL did not activate complement under any circumstances tested. Immunohistological analyses corroborated the concept that CRP-dependent complement activation inefficiently generates C5b-9. CONCLUSIONS: Binding of CRP to E-LDL is the first trigger for complement activation in the atherosclerotic lesion, but the terminal sequence is thereby spared. This putatively protective function of CRP is overrun at higher E-LDL concentrations, so that potentially harmful C5b-9 complexes are generated.