Publikation

The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI.

Wissenschaftlicher Artikel/Review - 17.06.2024

Bereiche
PubMed
Kontakt

Zitation
Moawad A, Janas A, Baid U, Ramakrishnan D, Saluja R, Ashraf N, Jekel L, Amiruddin R, Adewole M, Albrecht J, Anazodo U, Aneja S, Anwar S, Bergquist T, Calabrese E, Chiang V, Chung V, Conte G, Dako F, Eddy J, Ezhov I, Familiar A, Farahani K, Iglesias J, Jiang Z, Johanson E, Kazerooni A, Kofler F, Krantchev K, LaBella D, Van Leemput K, Li H, Linguraru M, Link K, Liu X, Maleki N, Meier Z, Menze B, Moy H, Osenberg K, Piraud M, Reitman Z, Shinohara R, Tahon N, Nada A, Velichko Y, Wang C, Wiestler B, Wiggins W, Shafique U, Willms K, Avesta A, Bousabarah K, Chakrabarty S, Gennaro N, Holler W, Kaur M, LaMontagne P, Lin M, Lost J, Marcus D, Maresca R, Merkaj S, Nada A, Pedersen G, von Reppert M, Sotiras A, Teytelboym O, Tillmans N, Westerhoff M, Youssef A, Godfrey D, Floyd S, Rauschecker A, Villanueva-Meyer J, Pflüger I, Cho J, Bendszus M, Brugnara G, Cramer J, Perez-Carillo G, Johnson D, Kam A, Kwan B, Lai L, Lall N, Memon F, Patro S, Petrovic B, So T, Thompson G, Wu L, Schrickel E, Bansal A, Barkhof F, Besada C, Chu S, Druzgal J, Dusoi A, Farage L, Feltrin F, Fong A, Fung S, Gray R, Ikuta I, Iv M, Postma A, Mahajan A, Joyner D, Krumpelman C, Letourneau-Guillon L, Lincoln C, Maros M, Miller E, Morón F, Nimchinsky E, Ozsarlak O, Patel U, Rohatgi S, Saha A, Sayah A, Schwartz E, Shih R, Shiroishi M, Small J, Tanwar M, Valerie J, Weinberg B, White M, Young R, Zohrabian V, Azizova A, Brüßeler M, Fehringer P, Ghonim M, Ghonim M, Gkampenis A, Okar A, Pasquini L, Sharifi Y, Singh G, Sollmann N, Soumala T, Taherzadeh M, Yordanov N, Vollmuth P, Foltyn-Dumitru M, Malhotra A, Abayazeed A, Dellepiane F, Lohmann P, Pérez-García V, Elhalawani H, Al-Rubaiey S, Armindo R, Ashraf K, Asla M, Badawy M, Bisschop J, Lomer N, Bukatz J, Chen J, Cimflova P, Corr F, Crawley A, Deptula L, Elakhdar T, Shawali I, Faghani S, Frick A, Gulati V, Haider M, Hierro F, Dahl R, Jacobs S, Hsieh K, Kandemirli S, Kersting K, Kida L, Kollia S, Koukoulithras I, Li X, Abouelatta A, Mansour A, Maria-Zamfirescu R, Marsiglia M, Mateo-Camacho Y, McArthur M, McDonnell O, McHugh M, Moassefi M, Morsi S, Muntenu A, Nandolia K, Naqvi S, Nikanpour Y, Alnoury M, Nouh A, Pappafava F, Patel M, Petrucci S, Rawie E, Raymond S, Roohani B, Sabouhi S, Sanchez-Garcia L, Shaked Z, Suthar P, Altes T, Isufi E, Dhermesh Y, Gass J, Thacker J, Tarabishy A, Turner B, Vacca S, Vilanilam G, Warren D, Weiss D, Willms K, Worede F, Yousry S, Lerebo W, Aristizabal A, Karargyris A, Kassem H, Pati S, Sheller M, Bakas S, Rudie J, Aboian M. The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. ArXiv 2024
Art
Wissenschaftlicher Artikel/Review (Englisch)
Zeitschrift
ArXiv 2024
Veröffentlichungsdatum
17.06.2024
eISSN (Online)
2331-8422
Kurzbeschreibung/Zielsetzung

The translation of AI-generated brain metastases (BM) segmentation into clinical practice relies heavily on diverse, high-quality annotated medical imaging datasets. The BraTS-METS 2023 challenge has gained momentum for testing and benchmarking algorithms using rigorously annotated internationally compiled real-world datasets. This study presents the results of the segmentation challenge and characterizes the challenging cases that impacted the performance of the winning algorithms. Untreated brain metastases on standard anatomic MRI sequences (T1, T2, FLAIR, T1PG) from eight contributed international datasets were annotated in stepwise method: published UNET algorithms, student, neuroradiologist, final approver neuroradiologist. Segmentations were ranked based on lesion-wise Dice and Hausdorff distance (HD95) scores. False positives (FP) and false negatives (FN) were rigorously penalized, receiving a score of 0 for Dice and a fixed penalty of 374 for HD95. The mean scores for the teams were calculated. Eight datasets comprising 1303 studies were annotated, with 402 studies (3076 lesions) released on Synapse as publicly available datasets to challenge competitors. Additionally, 31 studies (139 lesions) were held out for validation, and 59 studies (218 lesions) were used for testing. Segmentation accuracy was measured as rank across subjects, with the winning team achieving a LesionWise mean score of 7.9. The Dice score for the winning team was 0.65 ± 0.25. Common errors among the leading teams included false negatives for small lesions and misregistration of masks in space. The Dice scores and lesion detection rates of all algorithms diminished with decreasing tumor size, particularly for tumors smaller than 100 mm3. In conclusion, algorithms for BM segmentation require further refinement to balance high sensitivity in lesion detection with the minimization of false positives and negatives. The BraTS-METS 2023 challenge successfully curated well-annotated, diverse datasets and identified common errors, facilitating the translation of BM segmentation across varied clinical environments and providing personalized volumetric reports to patients undergoing BM treatment.