Publikation

Fibroblastic reticular cells mitigate acute graft-versus-host disease via MHCII-dependent maintenance of regulatory T cells.

Wissenschaftlicher Artikel/Review - 13.10.2022

Bereiche
PubMed
DOI
Kontakt

Zitation
Shaikh H, Pezoldt J, Mokhtari Z, Gamboa Vargas J, Le D, Peña Mosca J, Arellano-Viera E, Kern M, Graff C, Beyersdorf N, Lutz M, Riedel A, Büttner-Herold M, Zernecke A, Einsele H, Saliba A, Ludewig B, Huehn J, Beilhack A. Fibroblastic reticular cells mitigate acute graft-versus-host disease via MHCII-dependent maintenance of regulatory T cells. JCI Insight 2022
Art
Wissenschaftlicher Artikel/Review (Englisch)
Zeitschrift
JCI Insight 2022
Veröffentlichungsdatum
13.10.2022
eISSN (Online)
2379-3708
Kurzbeschreibung/Zielsetzung

Acute graft-versus-host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) inflicted by alloreactive T cells primed in secondary lymphoid organs (SLOs) and subsequent damage to aGvHD target tissues. In recent years, regulatory T cell (Treg) transfer and/or expansion has emerged as a promising therapy to modulate aGvHD. However, cellular niches essential for fostering Tregs to prevent aGvHD have not been explored, yet. Here, we tested whether and to what extent MHC class II (MHCII) expressed on Ccl19+ fibroblastic reticular cells (FRCs) shape the donor CD4+ T cell response during aGvHD. Animals lacking MHCII expression on Ccl19-Cre-expressing FRCs (MHCIIΔCcl19) showed aberrant CD4+ T cells activation in the effector phase resulting in exacerbated aGvHD that was associated with significantly reduced expansion of Foxp3+ Tregs and invariant natural killer T (iNKT) cells. Skewed Treg maintenance in MHCIIΔCcl19 mice resulted in loss of protection from aGvHD provided by adoptively transferred donor Tregs. In contrast, although FRCs upregulated co-stimulatory surface receptors, degraded and processed exogenous antigens after myeloablative irradiation, FRCs were dispensable to activate alloreactive CD4+ T cells in two mouse models of aGvHD. In sum, these data reveal an immunoprotective, MHCII-mediated function of FRC niches in secondary lymphoid organs (SLOs) after allo-HCT and highlights a hitherto unknown framework of cellular and molecular interactions that regulate CD4+ T cell alloimmunity.