Publikation

Radiation Exposure in Minimally Invasive Lumbar Fusion Surgery: A Randomized Controlled Trial Comparing Conventional Fluoroscopy and 3D Fluoroscopy-based Navigation

Wissenschaftlicher Artikel/Review - 01.01.2021

Bereiche
PubMed
DOI

Zitation
Klingler J, Sircar R, Hoedlmoser H, Brönner J, Hohenhaus M, Volz F, Naseri Y, Krüger M, Scholz C, Hubbe U. Radiation Exposure in Minimally Invasive Lumbar Fusion Surgery: A Randomized Controlled Trial Comparing Conventional Fluoroscopy and 3D Fluoroscopy-based Navigation. Spine (Phila Pa 1976) 2021; 46:1-8.
Art
Wissenschaftlicher Artikel/Review (Englisch)
Zeitschrift
Spine (Phila Pa 1976) 2021; 46
Veröffentlichungsdatum
01.01.2021
eISSN (Online)
1528-1159
Seiten
1-8
Kurzbeschreibung/Zielsetzung

STUDY DESIGN
Randomized controlled trial.

OBJECTIVE
The aim of this study was to compare the dosemetrically determined radiation exposure of surgeon and patient during minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) using conventional 2D fluoroscopy (FLUORO) or 3D fluoroscopy-based navigation (NAV).

SUMMARY OF BACKGROUND DATA
MIS TLIF was shown to exhibit higher radiation exposures compared to open techniques. In particular, the routinely exposed surgeon encounters the risks of increased radiation doses. With the additional use of intraoperative 3D navigation, major steps of the operation can be performed without exposing the operating room staff to ionizing radiation.

METHODS
Forty-four patients undergoing monosegmental MIS TLIF were randomized into the two intraoperative imaging technique groups (FLUORO or NAV). The primary endpoint was the radiation exposure of the surgeon; the secondary endpoints were the radiation exposure of the patient and C-arm readings.

RESULTS
After exclusion of three patients, 41 patients were analyzed. In general, the average radiation exposure of the surgeon was lower in the NAV group without being statistically significant. The radiation exposure of the patient was significantly higher in the NAV group at all dosemeter sites. The average fluoroscopy time was 63 ± 36 versus 109 ± 31 sec (FLUORO versus NAV group, P < 0.001).

CONCLUSION
The additional use of intraoperative 3D fluoroscopy-based navigation compared to conventional 2D fluoroscopy alone showed a nonsignificant reduction of the radiation exposure of the surgeon in monosegmental MIS TLIF, while increasing the radiation exposure of the patient.

LEVEL OF EVIDENCE
1.