Publikation
Reconstructing signaling pathways from RNAi data using probabilistic Boolean threshold networks
Wissenschaftlicher Artikel/Review - 19.06.2009
Kaderali Lars, Dazert Eva, Zeuge Ulf, Frese Michael, Bartenschlager Ralf
Bereiche
PubMed
DOI
Zitation
Art
Zeitschrift
Veröffentlichungsdatum
eISSN (Online)
Seiten
Kurzbeschreibung/Zielsetzung
MOTIVATION
The reconstruction of signaling pathways from gene knockdown data is a novel research field enabled by developments in RNAi screening technology. However, while RNA interference is a powerful technique to identify genes related to a phenotype of interest, their placement in the corresponding pathways remains a challenging problem. Difficulties are aggravated if not all pathway components can be observed after each knockdown, but readouts are only available for a small subset. We are then facing the problem of reconstructing a network from incomplete data.
RESULTS
We infer pathway topologies from gene knockdown data using Bayesian networks with probabilistic Boolean threshold functions. To deal with the problem of underdetermined network parameters, we employ a Bayesian learning approach, in which we can integrate arbitrary prior information on the network under consideration. Missing observations are integrated out. We compute the exact likelihood function for smaller networks, and use an approximation to evaluate the likelihood for larger networks. The posterior distribution is evaluated using mode hopping Markov chain Monte Carlo. Distributions over topologies and parameters can then be used to design additional experiments. We evaluate our approach on a small artificial dataset, and present inference results on RNAi data from the Jak/Stat pathway in a human hepatoma cell line.