Publikation
Functional deficiencies of granulocyte-macrophage colony stimulating factor and interleukin-3 contribute to insulitis and destruction of beta cells
Wissenschaftlicher Artikel/Review - 01.08.2007
Enzler Thomas, Gillessen Sommer Silke, Dougan Michael, Allison James P, Neuberg Donna, Oble Darryl A, Mihm Martin, Dranoff Glenn
Bereiche
PubMed
DOI
Zitation
Art
Zeitschrift
Veröffentlichungsdatum
ISSN (Druck)
Seiten
Kurzbeschreibung/Zielsetzung
The pathogenesis of type 1 diabetes (T1D) involves the immune-mediated destruction of insulin-producing beta cells in the pancreatic islets of Langerhans. Genetic analysis of families with a high incidence of T1D and nonobese diabetic (NOD) mice, a prototypical model of the disorder, uncovered multiple susceptibility loci, although most of the underlying immune defects remain to be delineated. Here we report that aged mice doubly deficient in granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) manifest insulitis, destruction of insulin-producing beta cells, and compromised glucose homeostasis. Macrophages from mutant mice produce increased levels of p40 after LPS stimulation, whereas concurrent ablation of interferon-gamma (IFN-gamma) ameliorates the disease. The administration of antibodies that block cytotoxic T lymphocyte associated antigen-4 (CTLA-4) to young mutant mice precipitates the onset of insulitis and hyperglycemia. These results, together with previous reports of impaired hematopoietic responses to GM-CSF and IL-3 in patients with T1D and in NOD mice, indicate that functional deficiencies of these cytokines contribute to diabetes.