Publication

Allosteric HSP70 inhibitors perturb mitochondrial proteostasis and overcome proteasome inhibitor resistance in multiple myeloma.

Journal Paper/Review - Jul 18, 2022

Units
PubMed
Doi
Contact

Citation
Ferguson I, Lin Y, Lam C, Shao H, Tharp K, Hale M, Kasap C, Mariano M, Kishishita A, Patiño Escobar B, Mandal K, Steri V, Wang D, Phojanakong P, Tuomivaara S, Hann B, Driessen C, Van Ness B, Gestwicki J, Wiita A. Allosteric HSP70 inhibitors perturb mitochondrial proteostasis and overcome proteasome inhibitor resistance in multiple myeloma. Cell Chem Biol 2022; 29:1288-1302.e7.
Type
Journal Paper/Review (English)
Journal
Cell Chem Biol 2022; 29
Publication Date
Jul 18, 2022
Issn Electronic
2451-9448
Pages
1288-1302.e7
Brief description/objective

Proteasome inhibitor (PI) resistance remains a central challenge in multiple myeloma. To identify pathways mediating resistance, we first mapped proteasome-associated genetic co-dependencies. We identified heat shock protein 70 (HSP70) chaperones as potential targets, consistent with proposed mechanisms of myeloma cells overcoming PI-induced stress. We therefore explored allosteric HSP70 inhibitors (JG compounds) as myeloma therapeutics. JG compounds exhibited increased efficacy against acquired and intrinsic PI-resistant myeloma models, unlike HSP90 inhibition. Shotgun and pulsed SILAC mass spectrometry demonstrated that JGs unexpectedly impact myeloma proteostasis by destabilizing the 55S mitoribosome. Our data suggest JGs have the most pronounced anti-myeloma effect not through inhibiting cytosolic HSP70 proteins but instead through mitochondrial-localized HSP70, HSPA9/mortalin. Analysis of myeloma patient data further supports strong effects of global proteostasis capacity, and particularly HSPA9 expression, on PI response. Our results characterize myeloma proteostasis networks under therapeutic pressure while motivating further investigation of HSPA9 as a specific vulnerability in PI-resistant disease.