Publication

IP-10-encoding plasmid DNA therapy exhibits anti-tumor and anti-metastatic efficiency

Journal Paper/Review - Jun 1, 2004

Units
PubMed
Doi

Citation
Keyser J, Schultz J, Ladell K, Elzaouk L, Heinzerling L, Pavlovic J, Moelling K. IP-10-encoding plasmid DNA therapy exhibits anti-tumor and anti-metastatic efficiency. Experimental dermatology 2004; 13:380-90.
Type
Journal Paper/Review (English)
Journal
Experimental dermatology 2004; 13
Publication Date
Jun 1, 2004
Issn Print
0906-6705
Pages
380-90
Brief description/objective

We report here that the interferon-induced protein of 10 kDa (IP-10 or CXCL10) elicits strong anti-tumor and anti-metastatic responses in mice when administered by plasmid DNA. Intratumoral but not intramuscular IP-10 DNA inoculation resulted in reduced tumor formation of malignant melanoma (B16F10) and Lewis lung carcinoma (LL/2) in C57BL/6 mice. In addition, plasmid DNA-encoding IP-10 substantially reduced the establishment of metastases when injected systemically by the intramuscular route. In contrast to the primary tumor model, the anti-metastatic effect of DNA-encoding IP-10 was primarily mediated by NK cells. Compared to DNA-encoding interleukin-12 (IL-12), therapy with DNA-encoding IP-10 exhibits lower efficacy against primary melanoma tumors but equivalent efficacy against primary Lewis lung tumors and against B16F10 lung metastasis formation. Co-administration of DNA-encoding IP-10 and IL-12 enhanced the anti-tumor activity of IL-12 in the lung metastasis model but had little effect in the local treatment of established subcutaneous tumors. Interestingly, treatment of nude mice lacking T lymphocytes with DNA-encoding IP-10 or IL-12 still resulted in a pronounced reduction of tumor growth or metastasis formation.