Publication
Blood-brain barrier disruption by low-frequency ultrasound
Journal Paper/Review - Apr 27, 2006
Reinhard Matthias, Hetzel Andreas, Krüger Sebastian, Kretzer Stefan, Talazko Jochen, Ziyeh Sargon, Weber Johannes, Els Thomas
Units
PubMed
Doi
Citation
Type
Journal
Publication Date
Issn Electronic
Pages
Brief description/objective
BACKGROUND AND PURPOSE
A recent study showed a dramatic increase in cerebral hemorrhage comprising atypical locations with low-frequency ultrasound-mediated recombinant tissue plasminogen activator-thrombolysis in humans. Here, we provide a possible explanation for this phenomenon by a side effect observed in a study using the similar ultrasound device.
METHODS
The study was originally undertaken to investigate by transcranial Doppler sonography, positron emission tomography and perfusion MRI whether transcranial application of wide-field low-frequency ultrasound (300 kHz) improves cerebral hemodynamics in patients with cerebral small vessel disease.
RESULTS
Showing no clear positive effect on cerebral hemodynamics in 4 patients and on cerebral perfusion (positron emission tomography) in 2 patients, the study has been terminated early because of a remarkable side effect in the first patient (a 62 year-old man) undergoing perfusion-MRI: detection of frontoparietal extravasation of Gadolinium contrast agent (applied during MRI perfusion imaging preinsonation) on MRI immediately postinsonation.
CONCLUSIONS
Abnormal permeability of the human blood-brain barrier can be induced by wide-field low-frequency insonation. The observed excessive bleeding rate with low-frequency sonothrombolysis might thus be attributable to primary blood-brain barrier disruption by ultrasound.