Publication

Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2

Journal Paper/Review - Feb 1, 2007

Units
PubMed
Doi

Citation
Kang-Decker N, Cao S, Chatterjee S, Yao J, Egan L, Semela D, Mukhopadhyay D, Shah V. Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J Cell Sci 2007; 120:492-501.
Type
Journal Paper/Review (English)
Journal
J Cell Sci 2007; 120
Publication Date
Feb 1, 2007
Issn Print
0021-9533
Pages
492-501
Brief description/objective

Endothelial cell-based angiogenesis requires activation of survival signals that generate resistance to external apoptotic stimuli, such as tumor necrosis factor-alpha (TNF-alpha), during pathobiologic settings. Mechanisms by which this is achieved are not fully defined. Here, we use a model in which the multifunctional cytokine nitric oxide counterbalances TNF-alpha-induced apoptosis, to define a role for membrane trafficking in the process of endothelial cell survival signaling. By perturbing dynamin GTPase function, we identify a key role of dynamin for ensuing downstream endothelial cell survival signals and vascular tube formation. Furthermore, nitric oxide is directly demonstrated to promote dynamin function through specific cysteine residue nitrosylation, which promotes endocytosis and endothelial cell survival signaling. Thus, these studies identify a novel role for dynamin as a survival factor in endothelial cells, through a mechanism by which dynamin S-nitrosylation regulates the counterbalances of TNF-alpha-induced apoptosis and nitric oxide-dependent survival signals, with implications highly relevant to angiogenesis.