Publication

Regulation of Endothelial Permeability in the Corpus Luteum: A Review of the Literature

Journal Paper/Review - Nov 1, 2013

Units
PubMed
Doi

Citation
Herr D, Bekes I, Wulff C. Regulation of Endothelial Permeability in the Corpus Luteum: A Review of the Literature. Geburtshilfe Frauenheilkd 2013; 73:1107-1111.
Type
Journal Paper/Review (English)
Journal
Geburtshilfe Frauenheilkd 2013; 73
Publication Date
Nov 1, 2013
Issn Print
0016-5751
Pages
1107-1111
Brief description/objective

The development of the human corpus luteum (yellow body) is dictated by a strictly controlled system of mutually communicating cells, the luteal steroid hormone-producing cells and endothelial cells. This cell-to-cell communication facilitates control of neoangiogenesis which is a prerequisite for the development of the corpus luteum and its function, the rapid release of large amounts of progesterone into the blood-vascular system. Preconditions for this process are the hormonal regulation of endothelial cell proliferation as well as of vascular permeability through LH and hCG. The morphological correlates of endothelial permeability are cell-to-cell adhesion molecules such as adherens junctions (AJ) and tight junctions (TJ) that open and close the gaps between mutually interacting, neighbouring endothelial cells like a "zip fastener". Various types of cell adhesion molecules have been detected in the corpus luteum such as occludin, claudin 1 and claudin 5 as well as VE-cadherin. It may be assumed that the regulation of AJ and TJ proteins is of particular importance for the permeability and thus for the function of the corpus luteum in early pregnancy since hCG treatment leads to a down-regulation of cell adhesion molecules in the luteal vessels. This effect is apparently mediated by VEGF. From a functional point of view, the hCG-dependent and VEGF-mediated down-regulation of cell adhesion molecules leads to a reduced transmissibility of cell-to-cell contacts and thus to an increased endothelial permeability. In this process the various cell adhesion molecules are not only directly regulated by VEGF but they also mutually interact and thus influence one another.