Publication

Machine learning in neurosurgery: a global survey

Journal Paper/Review - Aug 18, 2020

Units
PubMed
Doi

Citation
Staartjes V, Serra C, van Niftrik C, Stienen M, Veeravagu A, Schröder M, Gadjradj P, Klukowska A, Kernbach J, Stumpo V, Regli L. Machine learning in neurosurgery: a global survey. Acta Neurochir (Wien) 2020; 162:3081-3091.
Type
Journal Paper/Review (English)
Journal
Acta Neurochir (Wien) 2020; 162
Publication Date
Aug 18, 2020
Issn Electronic
0942-0940
Pages
3081-3091
Brief description/objective

BACKGROUND
Recent technological advances have led to the development and implementation of machine learning (ML) in various disciplines, including neurosurgery. Our goal was to conduct a comprehensive survey of neurosurgeons to assess the acceptance of and attitudes toward ML in neurosurgical practice and to identify factors associated with its use.

METHODS
The online survey consisted of nine or ten mandatory questions and was distributed in February and March 2019 through the European Association of Neurosurgical Societies (EANS) and the Congress of Neurosurgeons (CNS).

RESULTS
Out of 7280 neurosurgeons who received the survey, we received 362 responses, with a response rate of 5%, mainly in Europe and North America. In total, 103 neurosurgeons (28.5%) reported using ML in their clinical practice, and 31.1% in research. Adoption rates of ML were relatively evenly distributed, with 25.6% for North America, 30.9% for Europe, 33.3% for Latin America and the Middle East, 44.4% for Asia and Pacific and 100% for Africa with only two responses. No predictors of clinical ML use were identified, although academic settings and subspecialties neuro-oncology, functional, trauma and epilepsy predicted use of ML in research. The most common applications were for predicting outcomes and complications, as well as interpretation of imaging.

CONCLUSIONS
This report provides a global overview of the neurosurgical applications of ML. A relevant proportion of the surveyed neurosurgeons reported clinical experience with ML algorithms. Future studies should aim to clarify the role and potential benefits of ML in neurosurgery and to reconcile these potential advantages with bioethical considerations.